Recitation 10. November 19

Focus: Singular Value Decomposition.

Recall that for a matrix A the Singular Value Decomposition (SVD) is an expression $A=U \Sigma V^{T}$ where U, V are orthogonal matrices and Σ is diagonal.
The Singular Values denoted σ_{i} are the diagonal entries of Σ.
The Pseudo-inverse of A is given in terms of the SVD by $A^{+}=V \Sigma^{+} U^{T}$ where Σ^{+}has diagonal entries $\frac{1}{\sigma_{i}}$.
$A^{+} A$ and $A A^{+}$are the projections onto $C\left(A^{T}\right)$ and $C(A)$ respectively.

1. Consider the matrix

$$
A=\left[\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right]
$$

- Compute the Singular Value Decomposition of A.
- Compute the Psuedo-inverse A^{+}. Then compute the inverse A^{-1} by another method. How do they compare?

Solution: First we calculate $A^{T} A=\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}5 & 3 \\ 3 & 5\end{array}\right]$.
Next we diagonalize.

$$
\operatorname{det}(A-\lambda I d)=\lambda^{2}-10 \lambda+16 \quad \Rightarrow \quad \lambda=8,2
$$

And $A^{T} A$ has orthonormal eigenvectors

$$
N\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right]=\mathbb{R} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad N\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]=\mathbb{R} \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

For $\lambda=8,2$ respectively. We therefore set

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]
$$

Then to find the u_{i} we calculate

$$
u_{1}=\frac{A v_{1}}{\sigma_{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
4 \\
0
\end{array}\right] \frac{1}{2 \sqrt{2}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad u_{2}=\frac{A v_{2}}{\sigma_{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
2
\end{array}\right] \frac{1}{\sqrt{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

So $U=I d$ and the full SVD is

$$
A=U \Sigma V^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Then the Pseudo-inverse is

$$
A^{+}=V \Sigma^{+} U^{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & \frac{1}{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
1 & -2 \\
1 & 2
\end{array}\right] .
$$

We can also use the formula for the inverse of a 2×2 matrix to see $A^{-1}=\frac{1}{4}\left[\begin{array}{cc}1 & -2 \\ 1 & 2\end{array}\right]$. Of course, this agrees with the Pseudo-inverse because A is invertible.
2. 1. Find the maximum of the function

$$
\frac{3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}
$$

by expressing it in the form $\frac{x^{T} S x}{x^{T} x}$ for a symmetric matrix S and using the relation of this expression to the eigenvalues of S. For what values of $\left(x_{1}, x_{2}\right)$ is the maximum achieved?
2. Find the minimum of the function

$$
\sqrt{\frac{\left(x_{1}+4 x_{2}\right)^{2}}{x_{1}^{2}+x_{2}^{2}}}
$$

by expressing it in the form $\frac{\|A x\|}{\|x\|}$ and using the relation of this expression to the singular values of A.

Solution: We can express the numerator $3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ so the expression is $\frac{x^{T} S x}{x^{T} x}$ for $S=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. The maximum of the expression is given by the largest eigenvalue of the matrix, and the maximum is achieved at the corresponding eigenvector. The matrix has eigenvalues $\lambda=4,2$ so the maximum is 4. The corresponding eigenvector is $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. So the minimum is achieved at any multiple of this vector $\mathbb{R}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
We can express $\left(x_{1}+4 x_{2}\right)^{2}=\|A x\|^{2}$ for the 1×2 matrix $A=\left[\begin{array}{ll}1 & 4\end{array}\right]$. The expression is minimized by the smallest singular value of A (in absolute value), which is the square root of the smallest eigenvalue of

$$
A^{T} A=\left[\begin{array}{cc}
1 & 4 \\
4 & 16
\end{array}\right]
$$

which is 0 , since $A^{T} A\left[\begin{array}{c}4 \\ -1\end{array}\right]=0$
3. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

1. Compute its singular value decomposition
2. Use this to find the closest vector to $\left[\begin{array}{c}3 \\ -1\end{array}\right]$ in the column space of A and in the column space of A^{T}. How else could you compute these vectors? Do the other methods agree?

Solution: The singular value decomposition is

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

The pseudo-inverse is then

$$
A^{+}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

The closest vector vector to the column space of A is then given by the projection $A A^{+}=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ applied to the vector. Therefore the closest vector in the column space of A to $b=\left[\begin{array}{ll}3 & -1\end{array}\right]$ is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. We could alternatively compute it by observing the column space of A is spanned by $\left[\begin{array}{ll}1 & 1\end{array}\right]$ and computing $P_{C(A)}\left[\begin{array}{c}3 \\ -1\end{array}\right]=\frac{b \cdot(1,1)}{|(1,1)|^{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]=$ $\frac{2}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Of course these are the same vector. The second part is the same since $A=A^{T}$.
4. 1. If $A=Q R$ is a Gram-Schmidt Orthogonalization of A (i.e. Q is an orthogonal matrix), how does the SVD of A relate to the SVD of R ?
2. If $A=U \Sigma V^{T}$ is a SVD of a matrix A, and Q_{1}, Q_{2} are two orthogonal matrices, how do the singular values σ_{i} of $Q_{1} A Q_{2}^{-1}$ relate to those of A ?

Solution:

1. Suppose $R=U \Sigma V^{T}$ is the SVD of R. Then $A=Q\left(U \Sigma V^{T}\right)=(Q U) \Sigma V^{T}$. Since U and Q are both orthogonal matrices, so is $Q U$, hence the latter is the SVD of A. That is to say, to obtain the SVD of A from that of R, we replace u_{i} with $Q u_{i}$ and keep v_{i} and σ_{i} unchanged.
2. Suppose $A=U \Sigma V^{T}$ is the SVD of A. Then

$$
Q_{1} A Q_{2}^{-1}=Q_{1}\left(U \Sigma V^{T}\right) Q_{2}^{T}=\left(Q_{1} U\right) \Sigma\left(Q_{2} V\right)^{T}
$$

In passing from the first to the second expressions we have used that $Q_{2}^{-1}=Q_{2}^{T}$ since Q_{2} is orthogonal. As in the previous part, $Q_{1} U$ and $Q_{2} V$ are orthogonal since Q_{1}, Q_{2}, U, V are. Therefore the final expression is the SVD of $Q_{1} A Q_{2}^{-1}$. In particular, we see the singular values σ_{i} are unchanged.

