
Recitation 10. November 19

Focus: Singular Value Decomposition.
Recall that for a matrix A the Singular Value Decomposition (SVD) is an expression A = UΣV T where U, V are
orthogonal matrices and Σ is diagonal.
The Singular Values denoted σi are the diagonal entries of Σ.
The Pseudo-inverse of A is given in terms of the SVD by A+ = V Σ+UT where Σ+ has diagonal entries 1

σi
.

A+A and AA+ are the projections onto C(AT ) and C(A) respectively.

1. Consider the matrix

A =

[
2 2
−1 1

]
• Compute the Singular Value Decomposition of A.

• Compute the Psuedo-inverse A+. Then compute the inverse A−1 by another method. How do they compare?

Solution: First we calculate ATA =

[
2 2
−1 1

] [
2 −1
2 1

]
=

[
5 3
3 5

]
.

Next we diagonalize.
det(A− λId) = λ2 − 10λ+ 16 ⇒ λ = 8, 2

And ATA has orthonormal eigenvectors

N

[
−3 3
3 −3

]
= R

1√
2

[
1
1

]
N

[
3 3
3 3

]
= R

1√
2

[
−1
1

]
For λ = 8, 2 respectively. We therefore set

V =
1√
2

[
1 −1
1 1

]
Σ =

[
2
√

2 0

0
√

2

]
Then to find the ui we calculate

u1 =
Av1
σ1

=
1√
2

[
4
0

]
1

2
√

2
=

[
1
0

]
u2 =

Av2
σ2

=
1√
2

[
0
2

]
1√
2

=

[
0
1

]
So U = Id and the full SVD is

A = UΣV T =

[
1 0
0 1

] [
2
√

2 0

0
√

2

]
1√
2

[
1 1
−1 1

]
Then the Pseudo-inverse is

A+ = V Σ+UT =
1√
2

[
1 −1
−1 1

] [ 1
2
√
2

0

0 1√
2

] [
1 0
0 1

]
=

[
1 −1
1 1

] [
1
4 0
0 1

2

]
=

1

4

[
1 −2
1 2

]
.

We can also use the formula for the inverse of a 2x2 matrix to see A−1 = 1
4

[
1 −2
1 2

]
. Of course, this agrees

with the Pseudo-inverse because A is invertible.

2. 1. Find the maximum of the function
3x21 + 2x1x2 + 3x22

x21 + x22

by expressing it in the form xTSx
xT x

for a symmetric matrix S and using the relation of this expression to the
eigenvalues of S. For what values of (x1, x2) is the maximum achieved?

2. Find the minimum of the function √
(x1 + 4x2)2

x21 + x22



by expressing it in the form ‖Ax‖
‖x‖ and using the relation of this expression to the singular values of A.

Solution: We can express the numerator 3x21 +2x1x2 +3x22 =
[
x1 x2

] [3 1
1 3

] [
x1
x2

]
so the expression is xTSx

xT x

for S =

[
3 1
1 3

]
. The maximum of the expression is given by the largest eigenvalue of the matrix, and the

maximum is achieved at the corresponding eigenvector. The matrix has eigenvalues λ = 4, 2 so the maximum

is 4. The corresponding eigenvector is 1√
2

[
1
1

]
. So the minimum is achieved at any multiple of this vector

R
[
1
1

]
.

We can express (x1 + 4x2)2 = ‖Ax‖2 for the 1 × 2 matrix A =
[
1 4

]
. The expression is minimized by the

smallest singular value of A (in absolute value), which is the square root of the smallest eigenvalue of

ATA =

[
1 4
4 16

]

which is 0, since ATA

[
4
−1

]
= 0

3. Consider the matrix

A =

[
1 1
1 1

]
.

1. Compute its singular value decomposition

2. Use this to find the closest vector to

[
3
−1

]
in the column space of A and in the column space of AT . How

else could you compute these vectors? Do the other methods agree?

Solution: The singular value decomposition is

A =
1√
2

[
1 −1
1 1

] [
2 0
0 0

]
1√
2

[
1 1
−1 1

]
The pseudo-inverse is then

A+ =
1√
2

[
1 −1
1 1

] [
1
2 0
0 0

]
1√
2

[
1 1
−1 1

]
=

1

4

[
1 1
1 1

]
.

The closest vector vector to the column space of A is then given by the projection AA+ = 1
2

[
1 1
1 1

]
applied to

the vector. Therefore the closest vector in the column space of A to b =
[
3 −1

]
is

[
1
1

]
. We could alternatively

compute it by observing the column space ofA is spanned by
[
1 1

]
and computing PC(A)

[
3
−1

]
= b·(1,1)
|(1,1)|2

[
1
1

]
=

2
2

[
1
1

]
. Of course these are the same vector. The second part is the same since A = AT .

4. 1. If A = QR is a Gram-Schmidt Orthogonalization of A (i.e. Q is an orthogonal matrix), how does the SVD
of A relate to the SVD of R?

2. If A = UΣV T is a SVD of a matrix A, and Q1, Q2 are two orthogonal matrices, how do the singular values
σi of Q1AQ

−1
2 relate to those of A?

Solution:



1. Suppose R = UΣV T is the SVD of R. Then A = Q(UΣV T ) = (QU)ΣV T . Since U and Q are both
orthogonal matrices, so is QU , hence the latter is the SVD of A. That is to say, to obtain the SVD of
A from that of R, we replace ui with Qui and keep vi and σi unchanged.

2. Suppose A = UΣV T is the SVD of A. Then

Q1AQ
−1
2 = Q1(UΣV T )QT2 = (Q1U)Σ(Q2V )T .

In passing from the first to the second expressions we have used that Q−12 = QT2 since Q2 is orthogonal.
As in the previous part, Q1U and Q2V are orthogonal since Q1, Q2, U, V are. Therefore the final
expression is the SVD of Q1AQ

−1
2 . In particular, we see the singular values σi are unchanged.


